Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Facial Plast Surg Aesthet Med ; 2021 Dec 29.
Article in English | MEDLINE | ID: covidwho-1577516

ABSTRACT

Introduction: The coronavirus disease 2019 pandemic has led to concerns over transmission risk from head and neck operations including facial cosmetic surgeries. Objectives: To quantify droplet and aerosol generation from rhinoplasty techniques in a human anatomic specimen model using fluorescein staining and an optical particle sizer. Methods: Noses of human anatomic specimens were infiltrated using 0.1% fluorescein. Droplets and aerosols were measured during rhinoplasty techniques including opening the skin-soft tissue envelope, monopolar electrocautery, endonasal rasping, endonasal osteotomy, and percutaneous osteotomy. Results: No visible droplet contamination was observed for any rhinoplasty techniques investigated. Compared with the negative control of anterior rhinoscopy, total 0.300-10.000 µm aerosols were increased after monopolar electrocautery (p < 0.001) and endonasal rasp (p = 0.003). Opening the skin-soft tissue envelope, endonasal osteotomies, and percutaneous osteotomies did not generate a detectable increase in aerosols (p > 0.15). Discussion and Conclusions: In this investigation, droplets were not observed under ultraviolet light, and aerosol generation was noted only with cautery and endonasal rasping.

2.
Am J Otolaryngol ; 42(4): 102970, 2021.
Article in English | MEDLINE | ID: covidwho-1103683

ABSTRACT

INTRODUCTION: The highly contagious COVID-19 has resulted in millions of deaths worldwide. Physicians performing orbital procedures may be at increased risk of occupational exposure to the virus due to exposure to secretions. The goal of this study is to measure the droplet and aerosol production during repair of the inferior orbital rim and trial a smoke-evacuating electrocautery handpiece as a mitigation device. MATERIAL AND METHODS: The inferior rim of 6 cadaveric orbits was approached transconjunctivally using either standard or smoke-evacuator electrocautery and plated using a high-speed drill. Following fluorescein inoculation, droplet generation was measured by counting under ultraviolet-A (UV-A) light against a blue background. Aerosol generation from 0.300-10.000 µm was measured using an optical particle sizer. Droplet and aerosol generation was compared against retraction of the orbital soft tissue as a negative control. RESULTS: No droplets were observed following the orbital approach using electrocautery. Visible droplets were observed after plating with a high-speed drill for 3 of 6 orbits. Total aerosol generation was significantly higher than negative control following the use of standard electrocautery. Use of smoke-evacuator electrocautery was associated with significantly lower aerosol generation in 2 of 3 size groups and in total. There was no significant increase in total aerosols associated with high-speed drilling. DISCUSSION AND CONCLUSIONS: Droplet generation for orbital repair was present only following plating with high-speed drill. Aerosol generation during standard electrocautery was significantly reduced using a smoke-evacuating electrocautery handpiece. Aerosols were not significantly increased by high-speed drilling.


Subject(s)
COVID-19/transmission , Electrocoagulation/adverse effects , Infectious Disease Transmission, Patient-to-Professional , Occupational Exposure/adverse effects , Orbit/surgery , SARS-CoV-2/pathogenicity , Aerosols , COVID-19/prevention & control , Cadaver , Humans , Risk Assessment
3.
Am J Otolaryngol ; 42(1): 102829, 2021.
Article in English | MEDLINE | ID: covidwho-909337

ABSTRACT

PURPOSE: The COVID-19 pandemic has led to concerns over transmission risk from healthcare procedures, especially when operating in the head and neck such as during surgical repair of facial fractures. This study aims to quantify aerosol and droplet generation from mandibular and midface open fixation and measure mitigation of airborne particles by a smoke evacuating electrocautery hand piece. MATERIALS AND METHODS: The soft tissue of the bilateral mandible and midface of two fresh frozen cadaveric specimens was infiltrated using a 0.1% fluorescein solution. Surgical fixation via oral vestibular approach was performed on each of these sites. Droplet splatter on the surgeon's chest, facemask, and up to 198.12 cm (6.5 ft) away from each surgical site was measured against a blue background under ultraviolet-A (UV-A) light. Aerosol generation was measured using an optical particle sizer. RESULTS: No visible droplet contamination was observed for any trials of mandible or midface fixation. Total aerosolized particle counts from 0.300-10.000 µm were increased compared to baseline following each use of standard electrocautery (n = 4, p < 0.001) but not with use of a suction evacuating electrocautery hand piece (n = 4, p = 0.103). Total particle counts were also increased during use of the powered drill (n = 8, p < 0.001). CONCLUSIONS: Risk from visible droplets during mandible and midface fixation is low. However, significant increases in aerosolized particles were measured after electrocautery use and during powered drilling. Aerosol dispersion is significantly decreased with the use of a smoke evacuating electrocautery hand piece.


Subject(s)
Aerosols/adverse effects , COVID-19/transmission , Disease Transmission, Infectious/statistics & numerical data , Intraoperative Period , Pandemics , SARS-CoV-2 , COVID-19/epidemiology , Humans , Mandible , United States/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL